Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350837

RESUMO

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais , Sus scrofa , Vacinação , Imunidade Inata
2.
Vector Borne Zoonotic Dis ; 19(9): 690-693, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081745

RESUMO

Most diagnostic testing for West Nile virus (WNV) disease is accomplished using serologic testing, which is subject to cross-reactivity, may require cumbersome confirmatory testing, and may fail to detect infection in specimens collected early in the course of illness. The objective of this project was to determine whether a combination of molecular and serologic testing would increase detection of WNV disease cases in acute serum samples. A total of 380 serum specimens collected ≤7 days after onset of symptoms and submitted to four state public health laboratories for WNV diagnostic testing in 2014 and 2015 were tested. WNV immunoglobulin M (IgM) antibody and RT-PCR tests were performed on specimens collected ≤3 days after symptom onset. WNV IgM antibody testing was performed on specimens collected 4-7 days after onset and RT-PCR was performed on IgM-positive specimens. A patient was considered to have laboratory evidence of WNV infection if they had detectable WNV IgM antibodies or WNV RNA in the submitted serum specimen. Of specimens collected ≤3 days after symptom onset, 19/158 (12%) had laboratory evidence of WNV infection, including 16 positive for only WNV IgM antibodies, 1 positive for only WNV RNA, and 2 positive for both. Of specimens collected 4-7 days after onset, 21/222 (9%) were positive for WNV IgM antibodies; none had detectable WNV RNA. These findings suggest that routinely performing WNV RT-PCR on acute serum specimens submitted for WNV diagnostic testing is unlikely to identify a substantial number of additional cases beyond IgM antibody testing alone.


Assuntos
Febre do Nilo Ocidental/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
3.
Front Plant Sci ; 8: 1584, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955370

RESUMO

Corn poppy (Papaver rhoeas), the most problematic broadleaf weed in winter cereals in Southern Europe, has developed resistance to the widely-used herbicide, 2,4-D. The first reported resistance mechanism in this species to 2,4-D was reduced translocation from treated leaves to the rest of the plant. However, the presence of other non-target site resistance (NTSR) mechanisms has not been investigated up to date. Therefore, the main objective of this research was to reveal if enhanced 2,4-D metabolism is also present in two Spanish resistant (R) populations to synthetic auxins. With this aim, HPLC experiments at two 2,4-D rates (600 and 2,400 g ai ha-1) were conducted to identify and quantify the metabolites produced and evaluate possible differences in 2,4-D degradation between resistant (R) and susceptible (S) plants. Secondarily, to determine the role of cytochrome P450 in the resistance response, dose-response experiments were performed using malathion as its inhibitor. Three populations were used: S, only 2,4-D R (R-703) and multiple R to 2,4-D and ALS inhibitors (R-213). HPLC studies indicated the presence of two hydroxy metabolites in these R populations in shoots and roots, which were not detected in S plants, at both rates. Therefore, enhanced metabolism becomes a new NTSR mechanism in these two P. rhoeas populations from Spain. Results from the dose-response experiments also showed that pre-treatment of R plants with the cytochrome P450 (P450) inhibitor malathion reversed the phenotype to 2,4-D from resistant to susceptible in both R populations. Therefore, it could be hypothesized that a malathion inhibited P450 is responsible of the formation of the hydroxy metabolites detected in the metabolism studies. This and previous research indicate that two resistant mechanisms to 2,4-D could be present in populations R-703 and R-213: reduced translocation and enhanced metabolism. Future experiments are required to confirm these hypotheses, understand the role of P450, and the relationship between both NTSR mechanisms. On this basis, selection pressure with synthetic auxins bears the risk of promoting the evolution enhanced metabolism in Papaver rhoeas.

4.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814514

RESUMO

African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating.IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/administração & dosagem , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Cultivadas , Imunização , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Proteínas Virais/genética
5.
PLoS Pathog ; 12(4): e1005595, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27110717

RESUMO

African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Internalização do Vírus , Desenvelopamento do Vírus/fisiologia , Animais , Western Blotting , Capsídeo/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose , Endossomos/ultraestrutura , Endossomos/virologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Microscopia Eletrônica , Microscopia de Fluorescência , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Suínos , Proteínas do Envelope Viral/metabolismo
6.
PLoS One ; 10(11): e0142889, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618713

RESUMO

The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network.


Assuntos
Vírus da Febre Suína Africana/genética , Genoma Viral , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Animais , Sequência de Bases , Células Cultivadas , Chlorocebus aethiops , Dados de Sequência Molecular , Suínos , Células Vero , Virulência/genética
7.
Vet Res ; 46: 135, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26589145

RESUMO

African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Imunidade Inata , Vacinas Virais/imunologia , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Suínos , Vacinas Atenuadas/imunologia
8.
Cell Microbiol ; 17(11): 1683-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096327

RESUMO

Collective evidence argues that two members of the nucleocytoplasmic large DNA viruses (NCLDVs) acquire their membrane from open membrane intermediates, postulated to be derived from membrane rupture. We now study membrane acquisition of the NCLDV African swine fever virus. By electron tomography (ET), the virion assembles a single bilayer, derived from open membrane precursors that collect as ribbons in the cytoplasm. Biochemically, lumenal endoplasmic reticulum (ER) proteins are released into the cytosol, arguing that the open intermediates are ruptured ER membranes. ET shows that viral capsid assembles on the convex side of the open viral membrane to shape it into an icosahedron. The viral capsid is composed of tiny spikes with a diameter of ∼5 nm, connected to the membrane by a 6 nm wide structure displaying thin striations, as observed by several complementary electron microscopy imaging methods. Immature particles display an opening that closes after uptake of the viral genome and core proteins, followed by the formation of the mature virion. Together with our previous data, this study shows a common principle of NCLDVs to build a single internal envelope from open membrane intermediates. Our data now provide biochemical evidence that these open intermediates result from rupture of a cellular membrane, the ER.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Retículo Endoplasmático/metabolismo , Montagem de Vírus , Vírus da Febre Suína Africana/ultraestrutura , Animais , Células COS , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Microscopia Eletrônica , Células Vero
9.
J Virol ; 88(22): 13322-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210179

RESUMO

UNLABELLED: African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE: African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Imunização/métodos , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Vírus da Febre Suína Africana/genética , Animais , Expressão Gênica , Biblioteca Gênica , Masculino , Plasmídeos/administração & dosagem , Análise de Sobrevida , Suínos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
10.
Virus Res ; 179: 12-25, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24184318

RESUMO

Among the DNA viruses, the so-called nucleo-cytoplasmic large DNA viruses (NCLDV) constitute a monophyletic group that currently consists of seven families of viruses infecting a very broad variety of eukaryotes, from unicellular marine protists to humans. Many recent papers have analyzed the sequence and structure of NCLDV genomes and their phylogeny, providing detailed analysis about their genomic structure and evolutionary history and proposing their inclusion in a new viral order named Megavirales that, according to some authors, should be considered as a fourth domain of life, aside from Bacteria, Archaea and Eukarya. The maintenance of genetic information protected from environmental attacks and mutations is essential not only for the survival of cellular organisms but also viruses. In cellular organisms, damaged DNA bases are removed in two major repair pathways: base excision repair (BER) and nucleotide incision repair (NIR) that constitute the major pathways responsible for repairing most endogenous base lesions and abnormal bases in the genome by precise repair procedures. Like cells, many NCLDV encode proteins that might constitute viral DNA repair pathways that would remove damages through BER/NIR pathways. However, the molecular mechanisms and, specially, the biological roles of those viral repair pathways have not been deeply addressed in the literature so far. In this paper, we review viral-encoded BER proteins and the genetic and biochemical data available about them. We propose and discuss probable viral-encoded DNA repair mechanisms and pathways, as compared with the functional and molecular features of known homologs proteins.


Assuntos
Dano ao DNA , Reparo do DNA , Vírus de DNA/genética , Genoma Viral , Vírus de DNA/enzimologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Virol ; 87(17): 9780-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824796

RESUMO

The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under one-step growth conditions. However, at a low multiplicity of infection, when multiple rounds of replication occur, the growth of the mutant virus is impaired in swine macrophages but not in Vero cells, suggesting that Pol X is needed to repair the accumulated DNA damage. The replication of the mutant virus in Vero cells presents sensitivity to oxidative damage, and mutational analysis of viral DNA shows that deletion of Pol X results in an increase in the mutation frequency in macrophages. Therefore, our data reveal a biological role for ASFV Pol X in the context of the infected cell in the preservation of viral genetic information.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genoma Viral , Vírus da Febre Suína Africana/fisiologia , Animais , Chlorocebus aethiops , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Deleção de Genes , Instabilidade Genômica , Macrófagos/virologia , Mutação , Suínos , Células Vero , Replicação Viral
12.
Virus Res ; 173(1): 15-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23041356

RESUMO

African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.


Assuntos
Vírus da Febre Suína Africana/genética , Regulação Viral da Expressão Gênica , Transcrição Gênica , DNA Viral/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo
13.
Virus Res ; 173(1): 29-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23059353

RESUMO

This review summarizes recent structural and molecular biology studies related to the morphogenesis of African swine fever virus (ASFV). ASFV possesses icosahedral morphology and is constituted by four concentric layers: the central nucleoid, the core shell, the inner envelope and the icosahedral capsid. The extracellular virus acquires an external envelope by budding through the plasma membrane. The genes coding for 19 of the 54 structural proteins of the ASFV particle are known and the localization within the virion of 18 of these components has been identified. ASFV morphogenesis occurs in specialized areas in the cytoplasm, named viral factories, which are proximal to the microtubule organization center near the nucleus. Investigations of the different steps of morphogenesis by immunocytochemical and electron microscopy techniques, as well as molecular biology and biochemical studies, have shed light on the formation of the different domains of the virus particle, including the recognition of endoplasmic reticulum membranes as the precursors of the virus inner envelope, the progressive formation of the capsid on the convex face of the inner envelope and the simultaneous assembly of the core shell on the concave side of the envelope, with the pivotal contribution of the virus polyproteins and their proteolytic processing by the virus protease for the development of this latter domain. The use of ASFV inducible recombinants as a tool for the study of the individual function of structural and nonstructural proteins has been determinant to understand their role in virus assembly and has provided new insights into the morphogenetic process.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/ultraestrutura , Vírion/ultraestrutura , Montagem de Vírus , DNA Viral/metabolismo , Imuno-Histoquímica , Microscopia Eletrônica , Proteínas Virais/metabolismo
14.
Traffic ; 13(1): 30-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21951707

RESUMO

Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Retículo Endoplasmático/ultraestrutura , Proteínas Virais/biossíntese , Vírus da Febre Suína Africana/ultraestrutura , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Imunofluorescência , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Plasmídeos , Estrutura Terciária de Proteína , Transfecção , Células Vero , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Montagem de Vírus
15.
J Virol ; 85(16): 8263-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680527

RESUMO

African swine fever virus (ASFV), the causative agent of one of the most devastating swine diseases, has been considered exclusively cytoplasmic, even though some authors have shown evidence of an early stage of nuclear replication. In the present study, an increment of lamin A/C phosphorylation was observed in ASFV-infected cells as early as 4 h postinfection, followed by the disassembling of the lamina network close to the sites where the viral genome starts its replication. At later time points, this and other nuclear envelope markers were found in the cytoplasm of the infected cells. The effect of the infection on the cell nucleus was much more severe than previously expected, since a redistribution of other nuclear proteins, such as RNA polymerase II, the splicing speckle SC-35 marker, and the B-23 nucleolar marker, was observed from 4 h postinfection. All this evidence, together with the redistribution, dephosphorylation, and subsequent degradation of RNA polymerase II after ASFV infection, suggests the existence of sophisticated mechanisms to regulate the nuclear machinery during viral infection.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Núcleo Celular/metabolismo , Lamina Tipo A/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Chlorocebus aethiops , Citoplasma/virologia , Imunofluorescência , Hibridização In Situ , Microscopia Confocal , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Membrana Nuclear/virologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Lâmina Nuclear/virologia , Proteínas Nucleares/metabolismo , Fosforilação , RNA Polimerase II/metabolismo , Células Vero , Replicação Viral
16.
J Virol ; 84(15): 7484-99, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20504920

RESUMO

The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Proteínas Estruturais Virais/fisiologia , Montagem de Vírus , Animais , Células COS , Chlorocebus aethiops , Produtos do Gene env/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Processamento de Proteína Pós-Traducional , Células Vero , Vírion/ultraestrutura
17.
J Virol ; 84(1): 176-87, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846532

RESUMO

One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Poliproteínas/fisiologia , Proteínas Virais/fisiologia , Montagem de Vírus , Vírus da Febre Suína Africana/química , Regulação Viral da Expressão Gênica , Proteínas Estruturais Virais , Vírion , Replicação Viral
18.
J Virol ; 83(23): 12290-300, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793823

RESUMO

The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Estruturais Virais/fisiologia , Internalização do Vírus , Replicação Viral , Animais , Membrana Celular/química , Efeito Citopatogênico Viral , Proteínas de Membrana/deficiência , Proteínas Estruturais Virais/deficiência
19.
Virology ; 390(1): 102-9, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19464038

RESUMO

African swine fever virus (ASFV) encodes an AP endonuclease (pE296R) which is essential for virus growth in swine macrophages. We show here that the DNA repair functions of pE296R (AP endonucleolytic, 3'-->5' exonuclease, 3'-diesterase and nucleotide incision repair (NIR) activities) and DNA binding are inhibited by reducing agents. Protein pE296R contains one intramolecular disulfide bond, whose disruption by reducing agents might perturb the interaction of the viral AP endonuclease with the DNA substrate. The characterization of the 3'-->5' exonuclease and 3'-repair diesterase activities of pE296R indicates that it has strong preference for mispaired and oxidative base lesions at the 3'-termini of single-strand breaks. Finally, the viral protein protects against DNA damaging agents in both prokaryotic and eukaryotic cells, emphasizing its importance in vivo. The biochemical and genetic properties of ASFV AP endonuclease are consistent with the repair of DNA damage generated by the genotoxic intracellular environment of the host macrophage.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Dano ao DNA , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Vírus da Febre Suína Africana/genética , Animais , Sequência de Bases , Chlorocebus aethiops , DNA Viral/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Ditiotreitol/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Virais , Teste de Complementação Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/virologia , Mutagênicos/farmacologia , Oxirredução , Substâncias Redutoras/farmacologia , Células Vero
20.
Vet Microbiol ; 130(1-2): 47-59, 2008 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-18243588

RESUMO

African swine fever virus (ASFV), a large enveloped DNA-containing virus, infects domestic and wild pigs, and multiplies in soft ticks, causing an economically relevant hemorrhagic disease. Evaluation of the nuclear import ability of ASFV p10 protein was the major purpose of the present work. Two approaches were used to determine if p10 protein is imported into the nucleus by an active process: a yeast-based nuclear import assay and the determination of the subcellular localization of p10 protein in mammalian cells by fluorescence microscopy. The results obtained clearly demonstrate that p10 protein is actively imported into the nucleus, both in yeast and mammalian cells. Experiments aiming at identifying the critical residues responsible for the nuclear import of ASFV p10 protein indicate that the amino acids comprised between the positions 71 and 77 are important, although not sufficient, for the protein active nuclear import. In ASFV-infected cells, the p10 protein strongly accumulates in the nucleus at late times post-infection, indicating that p10 protein may accomplish an important function inside the nucleus during the late phase of the viral replication cycle.


Assuntos
Transporte Ativo do Núcleo Celular , Vírus da Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Animais , Sequência de Bases , Núcleo Celular , Chlorocebus aethiops , Dados de Sequência Molecular , Plasmídeos , Saccharomyces cerevisiae/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...